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Figure 1. Gallery of Sherpa3D: Blender rendering for various textured meshes from Sherpa3D, which is able to generate high-fidelity,
diverse, and multi-view consistent 3D contents with input text prompts. Our method is also compatible with popular graphics engines.

Abstract

Recently, 3D content creation from text prompts has
demonstrated remarkable progress by utilizing 2D and
3D diffusion models. While 3D diffusion models ensure
great multi-view consistency, their ability to generate high-
quality and diverse 3D assets is hindered by the limited
3D data. In contrast, 2D diffusion models find a dis-
tillation approach that achieves excellent generalization

†Corresponding author.

and rich details without any 3D data. However, 2D lift-
ing methods suffer from inherent view-agnostic ambiguity
thereby leading to serious multi-face Janus issues, where
text prompts fail to provide sufficient guidance to learn co-
herent 3D results. Instead of retraining a costly viewpoint-
aware model, we study how to fully exploit easily acces-
sible coarse 3D knowledge to enhance the prompts and
guide 2D lifting optimization for refinement. In this pa-
per, we propose Sherpa3D, a new text-to-3D framework
that achieves high-fidelity, generalizability, and geometric
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consistency simultaneously. Specifically, we design a pair
of guiding strategies derived from the coarse 3D prior gen-
erated by the 3D diffusion model: a structural guidance for
geometric fidelity and a semantic guidance for 3D coher-
ence. Employing the two types of guidance, the 2D diffusion
model enriches the 3D content with diversified and high-
quality results. Extensive experiments show the superiority
of our Sherpa3D over the state-of-the-art text-to-3D meth-
ods in terms of quality and 3D consistency. Project page:
https://liuff19.github.io/Sherpa3D/.

1. Introduction
3D content generation [36, 39, 58, 81] finds a broad range of
applications, including games, movies, virtual/augmented
reality and robots. However, the conventional process of
creating premium 3D assets is still expensive and chal-
lenging as it requires multiple labor-intensive and time-
consuming stages [33]. Fortunately, this challenge has
prompted the development of recent text-to-3D meth-
ods [10, 26, 28, 37, 39, 49, 52, 58, 79]. Only using text
prompts to automate 3D generation, these techniques pave
a promising way towards streamlining 3D creation.

Powered by the great breakthroughs in diffusion mod-
els [54, 62, 63, 86], two research lines of rationalization
have recently emerged in text-to-3D: inference-only 3D dif-
fusion methods and optimization-based 2D lifting methods.
Specifically, the inference-only methods [20, 29, 54] seek to
directly generate 3D-consistent assets by extensively train-
ing a new diffusion model on 3D data. However, due to the
scarcity of 3D datasets compared to accessible 2D images or
text data, these 3D diffusion models suffer from low quality
and limited generalizability. Without requiring any 3D data
for training, 2D lifting methods [4, 10, 39, 49, 58, 77, 79]
can produce high-quality and diversified 3D results by dis-
tilling 3D knowledge from pre-trained 2D diffusion mod-
els [62, 63, 86], also known as Score Distillation Sampling
(SDS). Yet lifting 2D observations into 3D is inherently am-
biguous without sufficient 3D guidance from text prompts,
leading to notorious multi-view inconsistency (e.g., Janus
problems) in 2D lifting methods.

These findings motivate us to think: is it possible to
bridge the two aforementioned streams to achieve gen-
eralizability, high-fidelity, and geometric consistency si-
multaneously? An intuitive idea is to leverage more 3D
data [11, 12] to fine-tune a view-point aware diffusion
model, but it requires substantial computational resources
and is prone to overfitting due to data bias [42, 69]. In con-
trast, our key insight is to utilize the easily accessible 3D
diffusion model as guidance and study how to fully exploit
coarse 3D knowledge to guide 2D lifting optimization for
refinement. In particular, when maintaining the quality and
generalizability of the original 2D diffusion model, we hope

the 2D lifting awareness can be guided by the strong 3D
geometric information from the 3D diffusion model. How-
ever, it is non-trivial in pursuit of this balance. Relying too
heavily on the coarse 3D priors from the 3D diffusion model
may degrade the generation quality, whereas little 3D guid-
ance could result in a lack of geometric awareness, leading
to multi-view inconsistency.

Towards this end, we propose Sherpa3D in this pa-
per, which greatly boosts high-fidelity and highly diversi-
fied text-to-3D generation with geometric consistency. Our
method begins by employing a 3D diffusion model to craft
a basic 3D guide with limited details. Building upon the
coarse 3D prior, we introduce two guiding strategies to in-
form 2D diffusion model throughout lifting optimization:
a structural guide for geometric fidelity and a semantic
guide for 3D coherence. Specifically, the structural guide
leverages the first-order gradient information of the normals
from the 3D prior to supervise the optimization of the struc-
ture. These normals are then integrated into the input of a
pre-trained 2D diffusion model, refining the geometric de-
tails. Concurrently, our semantic guide extracts high-level
features from multi-views of the 3D prior. These features
guide the 2D lifting optimization to perceive the geomet-
ric consistency under the preservation of original general-
izability and quality. Furthermore, we design an annealing
function, which modulates the influence of the 3D guidance
to better preserve the capabilities of 2D and 3D diffusion
models. As a result, our Sherpa3D is aware of the geomet-
ric consistency with rich details and generalizes well across
diverse text prompts. Extensive experiments verify the ef-
ficacy of our framework and show that our Sherpa3D out-
performs existing methods for high-fidelity and geometric
consistency (see qualitative results gallery in Figure 1 and
quantitative results in Table 2).

2. Related Work
2.1. Text-to-image Generation

Recently, text-to-image models such as unCLIP [61], Ima-
gen [63], and Stable Diffusion [62] have shown remarkable
capability of generating high-quality and creative images
given text prompts. Such significant progress is powered by
advances in diffusion models [13, 25, 55, 72], which can be
pre-trained on billions of image-text pairs [64, 66] and un-
derstands general objects with complex semantic concepts
(nouns, artistic styles, etc.) [62]. Despite the great success
of photorealistic and diversified image generation, using
language to generate different viewpoints of the same object
with 3D coherence remains a challenging problem [80].

2.2. Text-to-3D Generation

Building on promising text-to-image diffusion models,
there has been a surge of studies in text-to-3D generation.

2

https://liuff19.github.io/Sherpa3D/


However, it is non-trivial due to the scarcity of diverse 3D
data [8, 12, 82] compared to 2D. Existing 3D native dif-
fusion models [20, 29, 45, 54, 85, 88] usually work on a
limited object category and struggle with generating in-the-
wild 3D assets. To achieve generalizable 3D generation,
pioneering works DreamFusion [58] and SJC [77] propose
to distill the score of image distribution from pre-trained
2D diffusion models [62, 63] and show impressive results.
Following works [10, 27, 38, 39, 49, 75, 76, 79, 84, 90] con-
tinue to enhance various aspects such as generation fidelity
and optimization stability or explore more application sce-
narios [60, 70, 91]. As it is inherently ambiguous to lift 2D
observations into 3D, they may suffer from multi-face is-
sues. Although some methods use prompt engineering [4]
or train a costly viewpoint-aware model [42, 69] to alle-
viate such problems, they fail to generate high-quality re-
sults [10] or easily overfit to domain-specific data [12, 69].
In this work, we bridge the gap between 3D and 2D dif-
fusion models through meticulously designed 3D guidance,
which leads the 2D lifting process to achieve high-fidelity,
diversified, and coherent 3D generation.

2.3. 3D Generative Models

Extensive research has been conducted in the field of 3D
generative modeling, exploring diverse 3D representations
like 3D voxel grids [15, 22, 46], point clouds [3, 47, 51],
and meshes [16, 87]. The majority of these approaches
rely on training data presented in the form of 3D assets,
which proves challenging to obtain at a large scale. Draw-
ing inspiration from the success of neural volume render-
ing, recent studies have shifted towards investing in 3D-
aware image synthesis [6, 7, 18, 21, 56, 65]. This ap-
proach offers the advantage of directly learning 3D gen-
erative models from images. However, volume rendering
networks typically exhibit slow querying speeds, resulting
in a trade-off between extended training times and a lack of
multi-view consistency. Recently, benefitted from 2D diffu-
sion models, some works generate multi-view images with
single-view input [41–44, 68, 83]. As one of the pioneer-
ing works, Zero-1-to-3 [42] uses a synthetic dataset to fine-
tune the pretrained diffusion models, aiming to learn con-
trols of the relative camera viewpoint. Beyond Zero-1-to-3,
SyncDreamer [43] employs a synchronized multiview dif-
fusion model to capture the joint probability distribution of
multiview images. This model facilitates the generation of
multiview-consistent images through a unified reverse pro-
cess. Different from these methods, we focus on text-to-3D
synthesis, with the goal of generating multi-view consistent
3D contents with text prompts.

3. Method
Given a text prompt, our goal is to generate 3D assets with
high quality, generalizability, and multi-view consistency.

Our framework can be divided into three stages: (1) build
coarse 3D prior from the 3D diffusion model (Sec. 3.2); (2)
formulate two guiding strategies (e.g., structural and seman-
tic guidance) for 2D lifting process (Sec. 3.3); (3) incor-
porate both 3D guidance and SDS loss with an annealing
technique in optimization and generate the final 3D object
(Sec. 3.4). In this way, we can leverage the full power of
state-of-the-art 3D and 2D diffusion models to obtain 3D
coherence as 3D models, retaining intricate details and cre-
ative freedom as 2D models. Our pipeline is depicted in Fig-
ure 2. Before introducing our Sherpa3D in detail, we first
review the theory of Score Distillation Sampling (SDS).

3.1. Preliminaries

Score Distillation Sampling (SDS). As one of the most
representative 2D lifting methods, Dreamfusion [58] first
presents the concept of Score Distillation Sampling (SDS),
which is an algorithm to optimize a 3D representation such
that the image rendered from any view maintains a high
likelihood as evaluated by the 2D diffusion model given
text prompts. SDS consists of two key components: (1)
a 3D representation with parameter θ, which can produce
an image x at desired camera c through a parametric func-
tion x = g(θ; c); (2) a pre-trained text-to-image 2D diffu-
sion model ϕ with a score function ϵϕ(xt; y, t) that predicts
the sample noise ϵ given noisy image xt, noise level t and
text embedding y. The score function guides the direction
of the gradient for updating θ to reside rendered images in
high-density areas conditioned on text y. The gradient is
calculated by SDS as:

∇θLSDS(ϕ,x) = Et,ϵ

[
w(t) (ϵϕ (xt; y, t)− ϵ)

∂x

∂θ

]
, (1)

where w(t) is a weighting function. In practice, the denois-
ing score function ϵϕ is often replaced with another func-
tion ϵ̃ϕ that uses classifier-free guidance [24] that controls
the strength of the text condition (see Supplementary).

3.2. Sculpting a Coarse 3D Prior

To facilitate text-to-3D generation, most existing meth-
ods [27, 49, 58] rely on implicit 3D representations such as
Neural Radiance Fields (NeRF) [50] and its variants [5, 53].
However, it is difficult for NeRF-based modeling to extract
the high-quality surface with material and texture [78]. To
address this, we adopt the hybrid scene representation of
DMTet [67], including a deformable tetrahedral grid that
encodes a signed distance function (SDF) and a differen-
tiable marching tetrahedra (MT) layer that extracts explicit
surface mesh. Equipped with the hybrid representation, we
sculpt a coarse 3D prior from 3D diffusion model G3D

(e.g., Shap-E [29]) by the following procedure. Given text
prompts y, we first use the 3D diffusion model G3D to gen-
erate 3D results M0 and employ multi-layer perceptions
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Figure 2. Pipeline of our Sherpa3D. Given a text as input, we first prompt 3D diffusion to build a coarse 3D prior M encoded in the
geometry model (e.g., DMTet). Next, we render the normal map of the extracted mesh in DMTet and derive two guiding strategies from
M . (a) Structural Guidance: we utilize the structural descriptor to compute salient geometric features for preserving geometry fidelity
(e.g., without a pockmarked face problem). (b) Semantic Guidance: we leverage a semantic encoder (e.g., CLIP) to extract high-level
information for keeping 3D consistency (e.g., without multi-face issues). Employing the two guidance in 2D lifting process, we use the
normal map as shape encoding of the 2D diffusion model and unleash its power to generate high-quality and diversified results with 3D
coherence. Then we achieve the final 3D results via photorealistic rendering through appearance modeling. (“Everest’s summit eludes
many without Sherpa.”)

(MLPs) to query SDF values for each vertex along a reg-
ular grid. Next we sample a point set P = {pi ∈ R3} from
M0 with their SDF values {SDF (pi)}. For each pi, the
DMTet network F can predict SDF value s(pi), and a po-
sition offset ∆pi by:

(s(pi),∆pi) = F(pi; θ), (2)

where θ is the parameters of network F . Then, we incor-
porate 3D priors into the DMTet network Fθ with the point
set derived from 3D diffusion model by minimizing:

LSDF =
∑
pi∈P

|s(pi)− SDF (pi)|
2 + λdef

∑
pi∈P

||∆pi||2, (3)

where λdef is the hyperparameter controllingL2 regulariza-
tion strengths on offsets to avoid artifacts. Finally, we apply
the MT layer to extract mesh representation M . Now, we
have leveraged the knowledge from the 3D diffusion model
to construct a coarse 3D prior, which is encoded implicitly
in DMTet Fθ and represented explicitly by mesh M . Next,
we will discuss how to utilize the coarse 3D prior M as a
guide during the subsequent 2D diffusion lifting optimiza-
tion to refine a high-quality result with 3D coherence.

3.3. 3D Guidance for 2D Lifting Optimization

What knowledge can serve as guidance? The purpose of
introducing a 3D prior as guidance is to address the preva-
lent issue of viewpoint inconsistency both in geometry and
appearance. Through empirical studies, we have identified

geometric inconsistency as the main cause of 3D incoher-
ence, leading to multi-face Janus problem [37, 69]. In con-
trast, appearance inconsistency emerges in much more ex-
treme scenarios with lesser significance. Therefore, we dis-
entangle the geometry from the 3D model and fully leverage
coarse prior M to guide 2D lifting geometry optimization
with view-point awareness. Our analysis of the coarse 3D
prior indicates that it contains the essential geometric struc-
tures and captures the basic categorical attributes, keeping
semantic rationality across different views. Building upon
these observations, a natural insight is to preserve such in-
herent 3D knowledge as guidance and continuously benefit
the 2D lifting process. For example, given text prompts “a
head of the Terracotta Army,” we hope the knowledge in the
guidance can prevent issues such as a pockmarked face or
the unrealistic scenario of having a face on the back (e.g.,
Janus problem). To this end, we have designed two guiding
strategies derived from M : structural guidance for geomet-
ric fidelity and semantic guidance for 3D coherence.
Structural guidance. Given the current DMTet net F with
parameters θ that encodes the coarse 3D prior M , we apply
a differentiable render fn (e.g., nvidiffrast [34]) to gener-
ate a set of normal maps N = {ni|ni = fn(Fθ, ci), i =
1, ...n}, where ci is the camera position randomly sampled
in spherical coordinates. To extract the salient geometric
structure features, we first use a Gaussian filter with a ker-
nel standard deviation σ

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (4)
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to reduce the noise impact and obtain {σ(ni)}. As gradients
are simple but effective tools for revealing the geometric
contours and salient structures [14, 30], we then compute
the structural descriptor sets {Gσ(ni)} by

Gσ(ni) =

√
(
∂σ(ni)

∂x
)2 + (

∂σ(ni)

∂y
)2, (5)

where x and y are the coordinate directions of the normal
map ni. Throughout the 2D lifting process of updating Fθ

with newly rendered normal maps Ñ = {ñi}, it should
follow the structural guidance as:

min
θ

Lstruc :=

n∑
i=1

||Gσ(ni)−Gσ(ñi)||22, (6)

which enables the 2D lifting process to preserve geometric
fidelity and a well-aligned structure with the coarse 3D prior
when generating rich details.
Semantic guidance. While structural guidance maintains
low-level geometric perception from coarse 3D prior, se-
mantic guidance extracts high-level features for 3D coher-
ence. We first apply the pre-trained CLIP [59] model as
semantic encoder ψ to the normal set N and obtain seman-
tic feature maps Nc = {ψ(ni)}, proven to effectively cap-
ture semantic attributes like facial expressions or view cate-
gories [17]. Following the notation as above, we then define
the semantic guidance with cosine similarity:

min
θ

Lsem :=

n∑
i=1

ψ(ni) · ψ(ñi)

∥ψ(ni)∥∥ψ(ñi)∥
. (7)

Employing this guidance, we ensure that different views re-
tain inherent high-level information throughout the 2D lift-
ing optimization process. Experiments show that it can ef-
fectively mitigate multi-face problems, keeping 3D content
semantically plausible from all viewing angles.

3.4. Optimization

In this subsection, we incorporate both structural and se-
mantic guidance derived from coarse 3D prior to 2D lift-
ing optimization so that it can produce vivid and diversified
objects with multi-view consistency. For the disentangled
geometry modeling, we use the randomly sampled normal
map n as the input, bridging the gap between 3D and 2D
diffusion. To update the geometry model DMTet network
Fθ, we choose to use the publicly available Stable Diffu-
sion [62] as pre-trained 2D diffusion model ϕ and compute
the gradient of the SDS loss similar in Eq. 14:

∇θLSDS(θ,n) = Et,ϵ

[
w(t) (ϵϕ (zn

t ; y, t)− ϵ)
∂zn

t

∂n

∂n

∂θ

]
,

(8)

where ∂zn
t /∂n calculates the gradient of the encoder in the

latent diffusion model (LDM) [62]. Additionally, we intro-
duce a step annealing technique to balance the influence of
the 3D guidance during 2D lifting optimization:

γ(λ) = λe−βmax(0,ncur−m), (9)

where ncur is the current epoch and {β,m, λ} are the hyper-
parameters that control how γ decreased. Therefore, the to-
tal loss Lgeo to lift 2D geometry optimization with 3D guid-
ance is a weighted sum of three loss terms:

Lgeo(θ,n) = LSDS + γ(λstruc)Lstruc + γ(λsem)Lsem, (10)

which not only enables the 3D content generation without
multi-view inconsistency issues but also preserves the gen-
eralization and quality in 2D diffusion model ϕ. As our
pipeline can be integrated into any appearance model [9,
10, 35], we adopt a similar approach as Fantasia3D [10] to
better align our text and 3D object. Denote T with parame-
ters η as our appearance model, we have the rendered image
x = Tη(Fθ, ci). To update η, we again apply the SDS loss
for the final complete generated 3D object with detailed tex-
ture and coherent geometry:

∇ηLapp(η,x) = Et,ϵ

[
w(t) (ϵϕ (zx

t ; y, t)− ϵ)
∂zx

t

∂x

∂x

∂η

]
, (11)

which shares similar notations defined in Eq. 8. Finally,
through the tailored 3D structural and semantic guidance
that bridges the 2D and 3D diffusion models, our Sherpa3D
can mitigate the multi-face problem and achieve high-
fidelity and diversified results.

3.5. Implementation Details

We apply the multilayer perceptron (MLP) comprising of
three hidden layers to approximate Fθ and Tη . Adam opti-
mizer [32] is used to update Fθ and Tη with an initial learn-
ing rates of 1e− 3 decaying into 5e− 4. For 3D representa-
tions, we use textured mesh with a DMTet resolution of 128
to achieve a balance between quality and generation speed.
We sample random camera poses at a fixed radius of 2.5,
y-axis FOV of 45◦, with the azimuth in [−180◦, 180◦] and
elevation in [−30◦, 30◦]. We load Shap-E from [48] for 3D
diffusion model and choose stabilityai/stable-diffsuion-2-1-
base [62] for 2D diffusion model. For weighting factors, we
follow the same strategy as [27] to tune w(t). λstruc is set
to 10 and λsem is 30 to balance the magnitude of SDS loss.
Notably, our method only needs a single NVIDIA RTX3090
(24GB) GPU within 25 minutes. More details of optimiza-
tion, architecture design, and hyperparameter settings can
be found in the supplementary.

4. Experiments
In this section, we conduct comprehensive experiments
to evaluate our text-to-3D framework Sherpa3D and show
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Figure 3. Qualitative comparisons with baseline methods across different views (0◦ and 180◦). We can observe that baseline methods
suffer from severe multi-face issues while our Sherpa3D can achieve better quality and 3D coherence.

comparison results against other text-to-3D baseline meth-
ods. We first present qualitative results compared with five
SOTA baselines from different viewpoints. Then we re-
port the quantitative results with a user study. Finally, we
carry out ablation studies to further verify the efficacy of
our framework design. Please refer to the supplementary
for more comparisons, visualizations, and detailed analysis.

4.1. Experiment Setup

Baselines. We extensively compare our method Sherpa3D
against five baselines: Shap-E [29], DreamFusion [58],
Magic3D [39], ProlificDreamer [79], and Fantasis3D [10].
Due to various reasons, we can’t obtain the original imple-
mentation of some baselines. For DreamFusion, Magic3D,
and ProlificDreamer, we utilize their implementations in the
Threestudio library [19] for comparison. For Shap-E and
Fantasia3D, we follow their official implementation. We
consider these implementations to be the most reliable and
comprehensive open-source option available in the field. To
ensure a fair comparison, we use the Stable Diffusion [62]

model as 2D diffusion prior by default.
Metrics. We will show our results with notable compar-
isons to other baselines through visualization. As there is no
Ground-Truth 3D content corresponding to the text prompt,
reference-based metrics like Chamfer Distance are diffi-
cult to apply to zero-shot text-to-3D generation. Follow-
ing [28, 58], we evaluate the CLIP R-Precision [57], which
can measure how well the rendered images of generated 3D
content align with the input text. We use 100 prompts from
the Common Objects in Context (COCO) dataset [40] as
DreamFusion [58]. we also conduct a user study to further
demonstrate the multi-view consistency and overall genera-
tion quality of our method,

4.2. Qualitative Comparisons

We first demonstrate vivid and diversified text-to-3D results
generated from our Sherpa3D in the gallery as shown in
Figure 1. Then we compare our method with five baseline
method: Shap-E [29], DreamFusion [58], Magic3D [39],
Fantasia3D [10] and ProlificDreamer [79]. Figure 3 and 4
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Sherpa3D
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Figure 4. Qualitative comparisons with baseline methods across different views (−30◦ and 150◦).

give the comparative results with the same text prompt for
each object generation. We observe that the Shap-E [29]
only generates coarse shapes while other 2D lifting methods
suffer from multi-face problems. In contrast, our Sherpa3D
produces high-fidelity 3D assets with compelling texture
quality and multi-view consistency. Notably, our frame-
work is more efficient than other baselines with less time
to optimize. Specifically, it only takes within 25 minutes
from a text prompt to a high-quality 3D model ready to be
used in graphic engines.

4.3. Quantitative Comparisons

In Table 1, we report the CLIP R-Precision for Sherpa3D
and several baselines. It shows that our method outperforms
other baselines consistently across different CLIP models,
and approaches the performance of ground truth (GT) im-
ages. For the user study, we render 360-degree rotating
videos of 3D models generated from a collection of 120 im-
ages. Each volunteer is shown 10 samples of rendered video
from a random method and rates in two aspects: multi-view
consistency and overall generation quality. We collect re-
sults from 50 volunteers shown in Table 2. We observe

Table 1. Quantitative comparisons on generation renderings
with text prompts using different CLIP retrieval models. We com-
pared to ground-truth images, Shap-E [29], Dreamfusion [58],
Magic3D [39], evaluated on object-centric COCO as in [58].

Method R-Precision (%) ↑
CLIP B/32 CLIP B/16 CLIP L/14

GT Images 77.3 79.2 -
Shape-E [29] 41.1 42.5 46.4

DreamFusion [58] 70.3 73.2 75.0
Magic3D [39] 71.5 73.8 76.1

Sherpa3D (Ours) 72.3 75.6 79.3

that most users consider our results with much higher view-
points consistency and overall generation fidelity.

4.4. Ablation Study and Analysis

We carry out ablation studies on the design of our Sherpa3D
framework in Figure 5 using an example text prompt “a
head of the Terracotta Army”. Specifically, we perform ab-
lation on three aspects of our method: structural guidance,
semantic guidance, and the step annealing strategy. The re-
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Figure 5. Ablation study of our method. The generation is based on the text prompt “a head of the Terracotta Army”. We ablate the
design choices of structural guidance, semantic guidance (Sec. 3.3), and the step annealing technique (Sec. 3.4).

Table 2. Quantitative comparisons on the multi-view consis-
tency and overall generation quality score in a user study, rated on
a scale of 1-10, with higher scores indicating better performance.

Method Multi-view Consistency ↑ Overall Quality ↑
Shap-E [29] 6.09 3.33

DreamFusion [58] 4.58 6.05
Magic3D [39] 5.25 6.73

Fantasia3D [10] 3.83 5.90
ProlificDreamer [79] 5.78 7.02

Sherpa3D(Ours) 8.95 8.74

sults reveal that the omission of any of these elements leads
to a degradation in terms of quality and consistency. No-
tably, the absence of structural guidance leads to a loss of
geometric fidelity in the “army”, leading to a pockmarked
face; without semantic guidance, there’s a loss of seman-
tic rationality across different views, resulting in the multi-
view Janus problem. The lack of a balanced step annealing
results in an excessive influence of guidance with a rough
final output. This illustrates the effectiveness of our over-
all framework (Figure 2), which drives geometric fidelity,
multi-view consistency, and optimization balance steered
by the 3D guidance and annealing strategy.

To further demonstrate our generalizability, we com-
pare our method in Figure 6 with the Zero123 [42] which
uses more 3D data [42] to finetune a 2D diffusion model
to be viewpoint-aware. However, such a finetuning-based
method easily overfits to 3D training data and suffers from
severe performance degradation with unseen input of the
training set. In contrast, our method is more generalizable
to open-vocabulary text prompts.

5. Conclusion
In this paper, we present Sherpa3D, a new framework
that simultaneously achieves high-quality, diversified, and
3D consistent text-to-3D generation. By fully exploiting

“A deer draped in exquisite ancient Chinese fabric，
oil painting style”

“A head of the Terracotta 
Army”

Sherpa3D (Ours)              Zero123 Sherpa3D (Ours)              Zero123

Figure 6. Comparison with Zero123 [42]. We use the front view
of our generated 3D model as the input of Zero123 with open-
vocabulary text prompts.

easily obtained coarse 3D knowledge from the 3D diffu-
sion model, we derive structural guidance and semantic
guidance to enhance the prompts and provide continu-
ous guidance with geometric fidelity and 3D coherence
throughout the 2D lifting optimization. To further improve
the overall performance, we incorporate a step annealing
strategy that modulates the impact of 3D guidance and
2D refinement. Therefore, our framework bridges the
gap between 2D and 3D diffusion models, preserving
multi-view coherent generation while maintaining the
generalizability and fidelity of 2D models. Extensive qual-
itative and quantitative experiments verify the remarkable
improvement of our Sherpa3D on text-to-3D generation.

Limitations and future works. Although our Sherpa3D
achieves remarkable text-to-3D results, the quality still
seems to be limited to the backbone itself as we choose
Shap-E [29] and Stable Diffusion v2.1 base model in this
work. We expect them to be solved with a larger diffusion
model, such as SDXL [1] and DeepFloyd [2]. In future
work, we are interested in extending our insight to more
creative text-to-4D generation. We believe that Sherpa3D
provides a promising research path for user-friendly and
more accessible 3D content creation.
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Supplementary Material

6. More Discussion of Preliminaries
In this section, we provide more preliminaries and details of
our implementation for Score Distillation Sampling (SDS).

6.1. Diffusion Models

The diffusion model, which is a type of likelihood-based
generative model used to learn data distributions, has been
studied extensively in recent years [25, 71–74]. Given
an underlying data distribution q0(x), a diffusion model
composes two processes: (a) a forward process {qt}t∈[0,1]

to gradually add noise to the data point x0 ∼ q0(x0);
(b) a reverse process {pt}t∈[0,1] to denoise data (e.g.,
generation). Specifically, the forward process is de-
fined by qt (xt | x0) := N

(
αtx0, σ

2
t I

)
and qt (xt) :=∫

qt (xt | x0) q0 (x0) dx0, where αt, σt > 0 are hyper-
parameters. On the other hand, the reverse process is
described with the transition kernel pt(xt−1 | xt) :=
N (µϕ(xt, t), σ

2
t I) from p1(x1) := N (0, I). The train-

ing objective is to optimize µϕ by maximizing a variational
lower bound of a log-likelihood. In practice, µϕ is re-
parameterized as a denoising network ϵϕ(xt, t) [25] to pre-
dict the noise added to the clean data x0, which is trained
by minimizing the MSE criterion [25, 31]:

LDiff (ϕ) := Ex0,t,ϵ

[
ω(t) ∥ϵϕ (αtx0 + σtϵ)− ϵ∥22

]
, (12)

where ω(t) is the time-dependent weights. Besides, the
noise prediction network ϵϕ can be applied for approximat-
ing the score function [73] of the perturbed data distribution
q(xt), which is defined as the gradient of the log-density:

∇xt
log qt (xt) ≈ −ϵϕ (xt, t) /σt. (13)

This means that the diffusion model can estimate a di-
rection that guides xt towards a high-density region of
q(xt), which is the key idea Score Distillation Sampling
(SDS) [58, 77] for optimizing the 3D scene via well 2D
pre-trained models.

6.2. SDS with Classifier-Free Guidance

As one of the most successful applications of diffusion
models, text-to-image generation [61–63] generate samples
x based on the text prompt y, which is also fed into the ϵϕ
as input, denoted as ϵϕ (xt; t, y). An important technique
to improve the performance of these models is Classifier-
Free Guidance (CFG) [23]. CFG modifies the original
model by adding a guidance term, i.e., ϵ̂ϕ(xt; y, t) :=
(1+s)ϵϕ(xt; y, t)−sϵϕ(xt; t,∅), where s > 0 is the guid-
ance weight that controls the balance between fidelity and

diversity, while ∅ denotes the “empty” text prompt for the
unconditional case. Recall the SDS gradient form to update
θ:

∇θLSDS(ϕ,x) = Et,ϵ

[
ω(t) (ϵϕ (xt; y, t)− ϵ)

∂x

∂θ

]
,

(14)
and denote δx(xt; y, t) := ϵϕ(xt; y, t) − ϵ. In principle,
ϵ(xt; y, t) should represent the pure text-conditioned score
function in Eq. (14). But in practice, CFG is employed in
it with a guidance weight s to achieve high-quality results,
where we rewrite

δx(xt; y, t) = [ϵϕ(xt; y, t)− ϵ] + s[ϵϕ(xt; y, t)− ϵϕ(xt; t,∅)].
(15)

As DreamFusion [58] uses s = 100 for high fidelity, our
implementation adopts s = 50 with the enhancement of
structural and semantic guidance to preserve some diver-
sity. The two types of guidance can also be seen as another
form of prompt guidance that is more generalizable and ro-
bust. Therefore, there is a gap between the original formu-
lation in Eq. (14) and the practical coding implementation
in Eq. (15).

7. Additional Implementation Details

Training details. Our geometry model Fθ and appearance
model Tη is approximated by three-layer MLPs and we ap-
ply adam [32] optimizer to update them with an initial learn-
ing rates of 1×10−3 to decaying to 5×10−4. In particular,
our method is optimized for 2500 iterations about 15 min-
utes to learn Fθ and 2500 iterations about 10 minutes to
learn Tη . For geometry modeling, we utilize the Open3D
library [89] to calculate the signed distance function (SDF)
value for each point in Equations 2 and 3 in the main pa-
per. In our experiments, the DMTet-based coarse 3D prior
building stage is critical as it not only provides coarse 3D
knowledge with consistency but also boosts the speed of
the convergence of generation. For appearance modeling,
since our focus in this paper is to fully exploit easily ob-
tained coarse 3D knowledge that serves as guidance for 2D
lifting optimization (as discussed in Section 3.3 of our pa-
per), we do not design a specific appearance model for our
framework. Note that our geometry model is plug and play
and we can leverage different models [9, 10, 35], we lever-
age the same PBR materials approach in Fantasia3D [10] to
achieve photorealistic surface renderings and better aligns
with our geometry modeling.
Hyperparameter settings. We select the camera positions
(r, κ, φ) in the spherical coordinate system, where r denote
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radius, κ is the elevation and φ is the azimuth angle respec-
tively. Specifically, we sample random camera poses at a
fixed r = 2.5 with the κ ∈ [−30◦, 30◦]. In a batch of b × l
images, we partition φ into l intervals in [−180◦, 180◦] and
uniformly sample b azimuth angles in each interval. For
structural guidance, we set σ = 1 in Eq. (4) in the main
paper as the standard deviation of the Gaussian filter. We
tune λstruc and λsem in {0.01, 0.1, 1, 5, 10, 20, 30, 100}. We
find that often λstruc = 10 and λsem = 30 works well with
β = 0.5 in the step annealing technique, which may balance
the magnitude of SDS losses and better guide the 2D lifting
to refine the 3D contents with multi-view coherence. We
assigned the value of m to the epoch at around 1000 itera-
tions. For the guidance weight ω(t), we follow the Dream-
Time [27] to achieve higher fidelity results. Our codes for
implementation will be available upon acceptance.

8. Additional Experiments and Analysis
8.1. Additional User Study

To further demonstrate the effectiveness and impressive vi-
sualization results of our Sherpa3D, we conducted a more
intuitive user study (Figure 7) on 20 text prompts of five
baselines (ShapE [29], DreamFusion [58], Magic3D [39],
ProlificDreamer [79], Fantasia3D [10]) and ours. The study
engaged 50 volunteers to assess the generated results in 20
rounds. In each round, they were asked to select the 3D
model they preferred the most, based on quality, creativity,
alignment with text prompts, and consistency. We also com-
pare our method with recent finetuning-based techniques,
such as Zero123 [42] and MVDream [69], which utilize
more 3D data [12] to retrain a costly 3D aware diffusion
model from Stable Diffusion [62]. We use the same text
prompts and settings as mentioned above. As shown, we

Figure 7. User study of the rate from volunteers’ preference for
each method in the inset pie chart.

observe that Sherpa3D is preferable (65%) by the raters on
average. In other words, our model is preferred over the best
of all baselines in most cases. What’s more, our Sherpa3D
also outperforms than fine-tuning based method in terms of
overall performance as they easily suffer from styles (light-
ning, texture) overfitting [42, 69]. We believe this is strong
proof of the robustness and quality of our proposed method.

8.2. More Qualitative Results

Sherpa3D. In Figure 10, 11, 12, we present more text-to-3D
results obtained with Sherpa3D, which can generate high-
fidelity, diverse, and 3D-consistent results within 25 min-
utes. Besides the impressive 3D consistency and high fi-
delity, we can also change the style of generated 3D content
(Figure 8) by only modifying a small part of the prompt,
while preserving the basic structure of 3D content, which is
more convenient for users to flexibly edit generated objects.

A detailed and realistic 3D model of a 
vintage camera

A detailed and realistic 3D model of a vintage 
camera, leather texture

A futuristic battle robot, amidst a post-
apocalyptic urban wasteland

A futuristic battle robot, toy style

Figure 8. Sherpa3D can be used for flexible editing through a
small part of the prompt modification.

More comparison results. We provide more comparisons
with baselines in Figure 13, 14. To further demonstrate the
robustness and generalization of our method, we compare
our Sherpa3D with Zero123 [42] and MVDream [69] in
Figure 9. Although the concurrent work MVDream and
Zero123 can also resolve the multi-view inconsistency is-
sues via fine-tuning a costly viewpoints-aware model, we
observe that it is prone to overfit the limited 3D data [12].
Specifically, MVDream generates strange color styles while
Zero123 fails in such open-vocabulary prompts.

“A head of the Terracotta Army”

“Hyper-realistic image of a snow leopard in a winter landscape”

Sherpa3D (Ours) MVDream Zero123

Figure 9. Comparison with MVDream [69] and Zero123 [42].
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“A futuristic battle robot, heavily armed, amidst a post-
apocalyptic urban wasteland”

“A luxurious sky-blue leather handbag with a sleek and 
elegant design, highlighted by its vibrant blue color”

“A cybernetic biomechanical arm, with a blend of organic 
and mechanical elements”

“A statue of a angel”

“Commercial airliner in flight, sleek and modern design”

“Iron Man in his state-of-the-art suit, confidently standing, 
looking ahead, ready for action”

Figure 10. More generated results using our Sherpa3D within 25 minutes. Our work can generate high-fidelity and diversified 3D results
from various text prompts, free from the multi-view inconsistency problem.
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“Hyper-realistic image of a snow leopard, capturing its 
camouflage and majestic stance”

“Detailed portrait of a noble knight, full armor, intricate 
helmet design”

“An ultra-detailed illustration of a mythical Phoenix, rising 
from ashes, vibrant feathers in a fiery palette”

“A detailed and realistic 3D model of a vintage camera”

“Spaceship,futuristic design,sleek metal,glowing thrusters, 
flying in space”

“A DLSR Photo of the Leaning Tower of Pisa”

Figure 11. More generated results using our Sherpa3D within 25 minutes. Our work can generate high-fidelity and diversified 3D results
from various text prompts, free from the multi-view inconsistency problem.
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“A blooming red rose, with velvety petals, delicate green 
leaves, and a captivating fragrance that fills the air”

“A head of the Terracotta Army”

“Vintage wooden race car, polished mahogany finish, classic 
design with spoked wheels”

“A futuristic-style motorcycle with sleek design, neon lights, 
and a sci-fi aesthetic in an urban setting”

“A carved wooden Bodhisattva from China’s Song dynasty”

“A DSLR photo of an adorable Corgi dog with a wagging tail”

Figure 12. More generated results using our Sherpa3D within 25 minutes. Our work can generate high-fidelity and diversified 3D results
from various text prompts, free from the multi-view inconsistency problem.
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Sherpa3D
~25min

Fantasia3D
~ 45min

ProlificDreamer
~ 3h

DreamFusion
~ 1h

Shap-E
~10s

Magic3D
~ 40min

“Commercial airliner in flight, sleek and modern design”

“Iron Man in his state-of-the-art suit, confidently standing, looking 
ahead, ready for action”

“A statue of a angel”

“A 3D model of A Darth Vader helmet, highly detailed”

Figure 13. Qualitative comparisons with baseline methods across different views. All methods use stabilityai/stable-diffsuion-2-1-base for
fair comparison. We observe that baselines suffer from severe multi-face issues while Sherpa3D achieves better quality and 3D coherence.
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Sherpa3D
~25min

Fantasia3D
~ 45min

ProlificDreamer
~ 3h

DreamFusion
~ 1h

Shap-E
~10s

Magic3D
~ 40min

“Spaceship,futuristic design,sleek metal,glowing thrusters,flying in space”

“A detailed and realistic 3D model of a vintage camera”

“Hyper-realistic image of a snow leopard, capturing its camouflage and 
majestic stance”

“A luxurious sky-blue leather handbag with a sleek and elegant design, 
highlighted by its vibrant blue color”

Figure 14. Qualitative comparisons with baseline methods across different views. All methods use stabilityai/stable-diffsuion-2-1-base for
fair comparison. We observe that baselines suffer from severe multi-face issues while Sherpa3D achieves better quality and 3D coherence.
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